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1 Introduction

Nearest neighbor search is one of the most common information retrieval techniques in fields such
as image retrieval, face recognition, question answering, text search and more. In large retrieval
databases the search in the feature representation space often requires significant computation and
memory resources, and imposes a performance bottleneck. As data volumes heavily grow and content
search becomes an increasingly required task, methods for fast Approximate Nearest Neighbor (ANN)
search, which trades off a slight loss in accuracy for large performance gains, have become the focus
of extensive research [10, 2].

One main group of methods for ANN is based on binary hashing, which maps data points in the
original feature vector representation space into binary codes in the hamming space [2], for compact
representation and fast search. We present a neural network method for learning data-dependent,
binary hashing that preserve local similarity, by introducing a novel combination of a loss function
and sampling method. For clarity, we keep our focus on a hash code ranking strategy, that searches a
distinct representation for each data point in the database, rather than hash table lookup, that maps
data points into buckets to reduce the number of distance computations [10]. As opposed to previous
studies in this field, which report improvement in accuracy only over small code sizes (up to 128
bits), we present results on both small and large code lengths (768 bits), offering flexibility in choice
of strategy and resources vs. accuracy. No pre-computations or graphs are required for the training
process.

The full paper will review the effects of model architecture on accuracy vs. inference speed, present
use-cases on million and billion-scale datasets using a dedicated hardware accelerator1 and review
further findings on datasets, performance metrics, effects of data distribution and method comparison.

2 Model

Figure 1: The training model

As shown in Figure 1, the
model consists of a neural net-
work with a configurable num-
ber of hidden blocks, each
formed by a dense layer (with
configurable number of units)
followed by batch normaliza-
tion (BN) and a ReLU activation (a). The next stage is an embedding layer, creating a nbits-
dimensional, l2 normalized, float representation vector (b). For the sake of simulating a binary
{−1,+1}nbits vector, the new embedding then undergoes a relaxation of the non-differential sgn
function, using a β-scaled tanh function (c), similarly to [3]. This new, semi-hamming space,
is trained by optimizing the hamming-based similarity distribution relation to the original space
cosine-based similarity distribution (d), detailed in section 3. At inference all layers following the
last BN are omitted and replaced by a real sgn function, to receive a true binary vector.

1http://www.gsitechnology.com/The-APU-Novel-Hardware-For-Accelerated-Similarity-Search
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3 Loss formulation

Using the categorization suggested by [10], our solution can be defined as an explicit, multi-wise,
normalized similarity-to-similarity divergence minimization. Specifically, we use similarities over
multiple true nearest data points translated into probability distributions in the original and the
simulated hamming space, and aim to minimize the KL divergence between them.

To optimize hamming similarity in the output space, rather than the cosine, we form the hamming
similarity in a differential manner, using the inner product. It can be shown that for two l2 normalized
vectors x, y in the Rd space and two binary vectors f(x), f(y) in the {−1,+1}nbits space, the
cosine and normalized hamming similarity can be defined, respectively, as Sc(x, y) = x · y and
Sh(f(x), f(y)) =

# identicle positions
nbits = f(x)·f(y)

2∗nbits + 1
2 .

So that the minimization objective for a query point q over reference points {yj}pj=1 in the training
set can be given by

LKL =
k∑

i=1

pi log
pi
qi
, where pi =

eSc(q,xi)∑k
`=1 e

Sc(q,x`)
, qi =

eSh(f(q),f(xi))∑k
`=1 e

Sh(f(q),f(x`))

While {xi}ki=1 are a subset of {yj}pj=1 consisting of the true k NN’s to q. [4] uses KL divergence for
learning hash table lookup bins, training a soft label classifier supervised by "labels" created from
balanced graph partitioning. Here we construct the probability distributions from distances rather
than bins, to receive high resolution distinctiveness.

4 Proxy based sampling

Each sample in the training set contributes to the loss as a query point q. Using the entire training set as
reference points {yj}pj=1 to each query q in the batch in each training iteration, besides being almost
computationally unfeasible, may also cause convergence problems, overfitting or over-localization (as
each point relies on its k most closest reference points). Many methods use triplets, in-batch relations
or hard-sampling to overcome this issue. Somewhat inspired by [8], we use proxies to represent the
training set, though in contrary to [8] we do not train them, as we need real points to compute the
original similarity, but rather randomly sample them from our training set at each batch iteration. In
our experiments, changeable random proxy sampling has proved to produce higher accuracy than
other proxy generation methods such as preset k-means proxies or actual nearest neighbor points.

5 Experiments

For evaluation, we focus on three standard datasets: Sift1M [6], Deep1M and BigANN1M, where the
last two consist of the first million vectors of Deep1B [1] and BigANN [7] respectively. On these
datasets, our method significantly outperforms other binary hash code ranking methods, including all
binary hashing methods investigated on Sift1M in [10]. Table 1 presents a comparison with FAISS
LSH,2 ITQ [5] and Catalyzer [9].3

Table 1: Performance table (1-recall at 10,%). †Our Neural-Proxy Hash (NPhash). For fair comparison
to [9] we use two hidden layers with 1024 units. n-Proxies is set to 10K, k to 100 and β to

√
nbits.

Deep1M BigANN1M Sift1M

nbits 64 128 64 128 128 768

FAISS LSH 18.7 41.8 17.2 42.6 39.1 86.0
ITQ 21.0 - 22.8 41.8 - -
Catalyzer 25.5 46.8 28.3 52.2 - -
NPhash†(ours) 33.8 53.9 35.1 58.1 56.3 94.1

2https://github.com/facebookresearch/faiss, using their improved LSH implementation with
with trained thresholds, which produces better results than classic LSH such as reported in [9].

3Further comparisons will be presented in the full paper
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